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ABSTRACT 

Algebraic equations a r e  presented for the temperature distribution in a radiating 
gray gas. The equations a r e  in good agreement with exact solutions for the entire range 
of opacities for  a constant absorption coefficient and uniformly distributed heat sources, 
f o r  spherical, cylindrical, o r  slab geometries. It is shown numerically how to include 
a variable absorption coefficient and a nonuniform heat source distribution. 
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SIMPLE EQUATIONS FOR CALCULATING TEMPERATURE 

DISTRIBUTIONS IN RADIATING GRAY GASES 

by  Robert G. Ragsdale and Albert F. Kascak 

Lewis Research Center 

SUMMARY 

Equations are derived and presented for the temperature distribution throughout a 
heat generating, radiating gray gas. The results are simple, algebraic equations that 
require only a slide rule for use. The results a r e  in good agreement with exact answers 
over the entire range of opacities, from zero to infinity, for any heat flux, for a constant 
absorption coefficient and a uniform distribution of volumetric heat sources. Equations 
a r e  given for spherical, cylindrical, and slab geometries. The equations go to the cor- 
rect  form in the limiting case of a transparent gas (zero opacity), and they go to the dif- 
fusion theory limit for an opaque gas  (infinite opacity). At intermediate opacities (0. 1 
5 optical thickness 5 lo), the equations given temperatures that a r e  within 3 percent of 
a numerical solution to the exact transport equation. 

These equations are based on a new model of the radiative process occurring very 
near the outer edge of the gas. The equation for the edge temperature is 

4 where Tb is the brightness temperature, defined so that uTb gives the radiated heat 
flux, 7 is the optical thickness, kL for a slab of thickness L or  kD for a sphere o r  
cylinder of diameter D. The constant a is 1, 2, or  3, for a slab, cylinder, o r  
sphere, respectively . 

temperature distribution in the gas is given by 
For a constant absorption coefficient and uniformly distributed heat sources, the 

where a and T a r e  defined as above, and is the dimensionless distance from the 
center of the gas 

coefficient and a nonuniform heat source distribution. 
but not compared to exact answers. 

= 0) to the edge ( X  = 1). 
It is also shown numerically how to include a temperature-dependent absorption 

These equations are presented, 



INTROD UCTl ON 

Numerous research papers and textbooks (e. g. , refs. 1 and 2) have been published 
on the subject of radiative heat transfer.  Problems in which gases participate a r e  prob- 
ably the most complicated because gas  absorption coefficients are dependent on both the 
radiation wavelength and the gas temperature. Generally, either approximations or 
numerical computer solutions, or both, are required to obtain quantitative answers to  
specific problems. It is the purpose of this report to present some simple equations that 
require only a slide rule to obtain temperature distributions within radiating gases. 

In order to attack this problem, it is necessary to assume that the gas is gray. That 
means that the absorption coefficient is the same for all wavelengths of radiation. 
Although this is not generally true of real  gases, this approach does yield some 
engineering-estimate tools and, perhaps, some insight into radiative processes that would 
not otherwise be obtainable. It may be possible to account for spectral behavior by using 
a gray gas analysis along with some average absorption coefficient (refs. 3 and 4). 

In this report, the equations for temperature distribution throughout a heat gener- 
ating, radiating gas are obtained first for the case where the absorption coefficient is not 
a function of temperature, and where the volumetric heat sources are distributed uniform- 
ly throughout the gas volume. Then, these equations are rewritten for the more general 
case where the absorption coefficient is an arbitrary function of temperature and the heat 
sources a re  distributed as some arbitrary function of position in the gas volume. Although 
this general case obviously represents a considerably more complicated physical situation, 
it does not add much more numerical difficulty. 

Figure 1 shows a model of this problem for the three geometries investigated, a 
sphere, a cylinder, and a slab. The variables of the problem a r e  the physical size and 
shape of the gas volume, the value of the absorption coefficient, and the amount of power 
generated within the gas. 

A brief review of some publications on gaseous radiant heat transfer shows how this 
work fits into the structure of what has gone before. Even with the gray gas assumption, 
numerical methods a r e  required to obtain solutions to the exact transport equations 
(refs. 5 to 9). For  optically dense situations, such as in stars, approximations have 
been developed to give the temperature distribution near the surface (refs. 10 and 11). 

The most straightforward situation is that of a relatively transparent gas. In this 
case, the radiation emitted by every unit volume escapes the gas region with no apprec- 
iable absorption by any of the intervening volumes. The gas is therefore at constant 
temperature throughout. The radiated heat flux and the gas temperature a r e  related by a 
simple expression that contains only the absorption coefficient, as long as the gas is in 
local thermodynamic equilibrium. 
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(a) Sphere. 

(b) Cylinder. (c) Slab. 

Figure 1. - Model of radiat ing gas. 

Highly absorbing, or opaque, gases present a much more difficult situation, even 
when the absorption coefficient is constant. This kind of problem is generally attacked by 
using a diffusion approximation to the radiative transport equation. This procedure works 
quite successfully, at least in the interior regions. 
at the boundary of a region, however, because the heat flow is not a diffusive process 
within the last one o r  two photon mean f ree  paths of the outer edge. 

problem of the edge temperature remains. Chandrasekhar has published an approximation 
that works just in the outer regions of an opaque gas (ref. 11). But his method does not 
work for gases of intermediate opacity, o r  for transparent gases. Usiskin and Sparrow 
have presented some computer solutions for flat plates (ref. 8) and spheres (ref. 9), but 
only for intermediate opacities from 0 .1  to 2 .  
algebraic equations that can be used for other opacities. 

energy ?'jump'? between the gas and its surroundings if the heat transfer were solely by 
radiation. He presents second-order differential equations for  this energy jump for 
spherical, cylindrical, and flat plate geometries. He shows that the jump boundary con- 
ditions extend the range of vali5ty of the diffusion approximation to  comparatively low 
values of optical thickness. His results are presented in t e rms  of heat transfer between 

The diffusion equation does not work 

Thus, although the diffusion approximation works in the interior of opaque gases, the 

Their results do not provide simple 

Deissler (ref. 12) attacked the problem by considering the fact that there would be an 
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walls or from walls to flowing gases. No algebraic equations for the temperature distri- 
butions throughout a heat generating gas are given. There is also no detailed examination 
of just how far into the transparent gas regime, the jump boundary conditions apply. 

It is the purpose of this study to do these latter two things: First, simple algebraic 
equations are obtained that give the temperature distribution throughout a radiating gas as 
a function of absorption coefficient, power generation, and geometry. New expressions 
are derived for the edge temperature. The results obtained are compared with the results 
of Deissler and Chandrasekhar. A computer program was also written and is used to 
obtain exact solutions over the r a g e  of opacity from 0. 01 to 1000. The results from the 
simple equations are compared with these computer answers. The equations work for all 
opacities, from zero to infinity, for all power generation rates,  and for spheres, cylin- 
ders,  and slabs. The temperature distribution throughout the entire gas, from center 
to edge, can be easily calculated with a slide rule. 

sources. They are then rewritten for the more general case where the absorption coef- 
ficient is a function of temperature. The form k = cTn is used herein to illustrate the 
procedure. Practically any other function could be used with little difficulty. It is also 
shown how to incorporate any arbitrary distribution of heat sources into the equations. 
This is done by calculating the temperature distribution in an induction-heated uranium 
plasma. For this case the absorption coefficient varies with temperature, and heat gen- 
eration varies with radial position. 

The equations are first obtained for a constant absorption coefficient and uniform heat 

SYMBOLS 

A 

a 

e 

f 

k 

L 

2 

M 

cross-sectional area 

constant in eq. (22) 

mathematical constants 

diameter 

gas emissive power, UT 

kernel of integral equation 

functions used to put differential equation into standard form 

linear absorption coefficient 

slab thickness 

path length of beam of radiation 

molecular weight 

4 
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-L 
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Z 
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Z 

P 
6 

E 

11 

7 

7* 

5 
P 

(3 

X 

X 
- 

. .  

mass  of gas in a unit volume 

unit vector normal to  surface 

function use to put differential equation into standard form 

heat generation rate  per unit volume 

heat flux, heat flow per unit time per unit area 

radius 

unit vector in R direction 

radius normalized to edge radius, R/Re 

gas law constant 

surface area 

temperature 

volume 

coordinate normal to slab surface, zero at slab midplane 

normalized slab coordinate, z/ze 

beta function 

skin depth 

sum of higher-order t e rms  in Taylor se r ies  

nondimensional heat flux 

opacity (or optical dimension), kD or kL 

optical depth into gas from edge 

normalized emissive power 

gas density 

Stefan -Bolt zmann con st ant 

general coordinate, either R or  z 

dimensionless general coordinate, either E or Z 

Subscripts: 

av average 

b brightness 

C center 
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e edge 

f field 

S source 

W wall 

X argument of beta function, see  eq. (36) 

Super script: 

n temperature exponent, see eq. (27) 

ANALYSIS 

In this section equations are derived that give the gas temperature as a function of 
position within the gas volume, absorption coefficient, and amount of heat being generated 
within the gas. There is one such equation for each of the three geometries considered - 
sphere, cylinder, and slab. 

"edge" temperature. This is done for  a constant absorption coefficient and uniform heat 
generation. Next, an expression fo r  the edge temperature is derived. These two equa- 
tions give the desired equation for gas temperature from the center out to, and including, 
the edge temperature. Then, this equation is rewritten for the case where the absorption 
coefficient is an arbitrary function of temperature. Next, it is shown how to easily write 
similar equations for any specified variation of heat sources throughout the gas. Finally, 
a numerical computer solution to the transport equations is formulated. The computer 
solution was used to obtain answers from the exact radiant transport equation in order to 
check the accuracy of the diffusion equations obtained. Expressions similar to the ones 
derived herein a r e  also obtained from the differential equations presented in reference 12. 
A comparison of these two sets of equations is presented and discussed in this report. 

First, an equation is derived for the temperature distribution normalized to the 

Diffusion Equations 

The diffusion equation for  radiative heat flow is derived first for a parallel-plate, 
or slab, geometry. This derivation illustrates the mathematics. 
tions for cylindrical and spherical geometries are given without derivation because the 
steps a r e  analogous. 

Then, the final equa- 
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The gas to  be analyzed is contained in a volume between two parallel planes that are 
some distance L apart. There is steady-state, so that the temperature. at a given point 
within the volume is unchanging with time. The energy that is radiated is produced by 
heat sources uniformly distributed throughout the gas volume. 
heat sources could be due to nuclear fusion, nuclear fission, electric currents, or chem- 
ical combustion. 

herein that the heat flow is a diffusion process; that is, the local flux is proportional to  a 
local gradient: 

In real  situations, such 

In order to obtain an equation relating gas temperature and heat flux, it is assumed 

Flux = Coefficient x Gradient (1) 

For radiative heat transfer in a gas, equation (1) is written as 

where q is the heat flux in the +z direction, k is the absorption coefficient, and e is 
UT , or  the gas emissive power. Equation (2) has been derived by a number of investi- 
gators, beginning with Rosseland in 1931. A recent derivation is given by Deissler in 
reference 12. 

4 g 

For  a parallel-plate geometry, the heat flux is related to the volumetric heat 
generation rate  by 

In this first derivation, Q is taken to be constant throughout the gas volume. 
can be written as 

Equation (2) 

Integrating equation 
z and substituting e 

(4) from some general location within the gas z to the outer edge 
crT4 for e give 

g 

OT 4 -UT,=-  
8 

( 5 )  
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Here z is zero at the center plane, as shown in figure l(c). 
somewhat, since the edge heat flux is 

This can be generalized 

and the optical thickness of the slab of gas is 

.T kL = 2kze 

Equations (5), (6), and (7) give 

where z is z/ze, and varies from 0 at the center of the gaseous slab to 1 at either of 
the bounding surface planes. The total distance between the two surfaces is 2ze, or L. 

Equation (8) is instructive because it begins to expose some of the characteristics of 
a heat generating, radiating gas. For  example, the difference between the center temper- 
ature and the edge temperature is determined by the product of the opacity and the edge 
heat flux, independent of the absolute size or  the geometrical shape for the three geom- 
etries considered in this analysis. 

However, equation (8) cannot be used to obtain actual temperatures because the edge 
temperature is unknown. It can be arbitrarily specified as a boundary condition, as was 
done in reference 13. Deissler obtained an expression for the edge temperature from a 
second-order diffusion equation. A different equation for the edge temperature is 
obtained in the following section from a new model of the radiative processes occurring 
at the edge of the gas. 

' 

Edge l e  m per at u re 

An equation for the edge temperature of a radiating volume of gas is obtained by 
writing a heat balance on the outermost "layerTv of gas. The layer considered is of 
thickness Az, where Az is small enough that kAz, o r  AT, is much less  than 1; that is, 
the layer is optically thin. Therefore, all of the gas in this layer is at the same temper- 
ature, T,. Further, the heat flux emitted in this layer is given by 

4 qemit = &aTe AZ 
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Now, the heat energy emitted in this layer must be exactly equal to the heat generated 
in the layer, plus the amount absorbed in it. Some energy is absorbed, since all of the 
energy generated within the gas volume must pass through the layer in order to escape. 
The balance, in words, is 

- 

Emitted = Absorbed + Generated 

The generated heat is simply 

qgen = Q Az 

The heat flux entering the layer is qe. The intensity, I, associated with this flux is 
attenuated along any given ray according to the law: 

-kZ 1 = 1  e e 

When all rays a re  summed up, the average, or  "mean", beam length across a slab is 
just 2Az, in the limiting case of Az approaching zero, (ref. 14). Thus, 

-2k AZ 
q = gee 

Finally, since eqX = 1 - x for x << 1, and since the fraction absorbed is 1 minus the 
fraction transmitted, the absorption in the outer layer is given by 

Equations (9), ( l l ) ,  and (14) are substituted into the energy balance equation (10) 

(15) 
4 &UT, AZ = 2qek AZ + Q AZ 

Dividing by 4k Az and noting that T = 2kze and that qe = Qze we get 

0T4 = 5 (1 + :) 
e 2  

9 
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This equation is interesting in itself, because it shows that the edge temperature is 
determined uniquely by the edge heat flux leaving the surface and the optical thickness of 
the slab T .  It further shows that, for very opaque gases (where 1 / ~  << l), the edge 
temperature is determined solely by the radiated heat flux. The radiated heat flux is 
twice the amount that would be radiated by a blackbody at the edge temperature Te. This 
agrees with estimates of stellar photosphere temperatures (ref. 10). 

Equation (16) gives the edge temperature for a slab of gas. For a cylinder, an 
analogous development exists, except that qe = QRe/2. This leads to 

Similarly, for a sphere q = QRe/3 and e 

Thus, the general formula for the edge temperature is 

0T4 = 5 + :) 
e 2  

where a = 1 for a slab, a = 2 for a cylinder, and a = 3 for a sphere 

General Temperature Distribution 

Equation (8) gave the temperature distribution throughout the gas relative to the edge 
temperature Te. Equation (19) gives the edge temperature. 
bine to give 

These two equations com- 

2 

Where X is Z for  a slab and 
temperature Tb be defined so  that oTb gives the radiated heat flux qe: 

for a cylinder o r  a sphere. Now, let a brightness 
4 
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4 
b qe = UT 

Then, equation (20) becomes 

Equation (22) is the desired goal. It is a simple, algebraic equation for the temper- 
ature distribution throughout the gas from the center = 0) to the edge E = 1). It does 
give the established temperature distribution for the two limits of an opaque gas (T  -. m) 

and a transparent gas  (T  - 0). For an opaque gas, 

4 q =  UT, e 

and fo r  a transparent gas, 

qe = 2roTe 4 

4 
e qe = TUT 

27 4 qe = - UT 
3 e  

for a slab, cylinder, and a sphere, respectively. 

trouble, the absorption coefficient can be an arbitrary function of temperature. To illus- 
t ra te  this, equation (22) is rewritten for the case where k = cTn in the following section. 

Equation (22) was developed for a constant absorption coefficient. With little more 

T e m per at u re - D e pe n de n t Absorption Coefficient 

The general diffusion equation for a constant volumetric heat source distribution was 
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Now, if k = cTn, equation (4) is 

This equation can be integrated to give the equivalent of equation (5) for a constant 
absorption coefficient : 

where T~ is given by 2zeke. 
analogously to equation (16): 

Similarly, an 

4 qe 
e 2  

a T  = -  

Combining equations (28) and (29) gives 

edge temperature equation can be developed 

k+;) (29) 

Equation (30) is a little more complicated than its constant absorption coefficient counter- 
part (eq. (22)) because of T ~ .  The term T~ depends Te because 

n 
T~ = 22 e e  k = 2zecTe 

The values of T~ and Te have to be determined by an iteration between equations (29) 
and (31). Thus, equation (30) gives the gas temperature T as a function of position z. 

Although the algebra is not carried out here, it should be apparent that virtually any 
distribution of heat sources could be accommodated in equation (4). The integration that 

has been carried out for constant Q is 
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No additional complexity is introduced if Q is some function of z. Thus, any Q(z) 
can be handled analytically so long as the integration / Q(z)z dz can be carried out. 

Average Temperature 

An average gas  temperature can be calculated from the equation for the local tem- 
perature distribution. However, it turns out to  be impossible to obtain a closed-form 
solution for average temperature in the case of a sphere or a slab. For these two cases, 
the average temperature is given in te rms  of an integral function which is then evaluated 
by numerical integration. For a cylinder, the required integration is carried out to 
obtain a closed-form solution. 

used herein is a "mixed mean cup11 temperature; that is, obtained by weighting the local 
temperature with the local density. The mass  of gas in a unit volume (of cross-  
sectional area A and unit thickness) of gas between two parallel plates is 

. 

It is first necessary to define an average temperature. The average temperature 

P m = p  V = - A  av 
@'av 

This mass  is also given by integrating the local density over the volume 

(33) 

c Equating equations (33) and (34) gives the defining equation for the average temperature, 
normalized to the brightness temperature Tb: 

1 

Tav 

Tb 
(35) 
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where T@) is the local temperature. It is given by equation (22) with = E as a 
function of the opacity T and the local position Z. Equation (22) is substituted into 
equation (35) to obtain an equation for the average temperature. 

For a slab geometry, the following expression was obtained: 

The term 6 (1/2,3/4) is an incomplete beta function. It cannot be analytically inte- 
grated. The argument x is given by 

X 

X =  
1 37 1 + - + -  

The expression for P (1/2,3/4) is X 

(37) 

As T varies from zero to  infinity, x varies from zero to 1. Equation (38) was numer- 
ically integrated, and the value of the integral is shown in figure 2 .  

In a similar fashion, for a sphere the equation for average temperature is 

TC 

b 

(39) r 

where here  B is given by X 
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2.4 7 

m 
a, 
c 
n 

I 
Beta function . 4  argument, .6 x .8 1.0 

Figure 2. - Incomplete beta functions: 

Px(n, m) = /'tn-'(l - t)"l dt. 
0 

8 
3 37 1 + - + -  

X =  

r 8  

The opacity T is based on the sphere diameter, 

analytic expression was obtained 
For a cylinder, the same approach gives an expression that is integrable, so an 

The average temperature is given by 

Tb (1 - + - + -  1 377/4 - ( l  - +  - 
2 7 16 2 7  

Equations (36), (39), and (41) could be rewritten in te rms  of Te and T, rather 
than 7. For example, equation (41) can be reformulated using the following relations that 
come from equation (22) for a cylinder (a = 2): 

15 



. .  
4 2 7 1 6  

Tb 

These three equations can be substituted into equation (41) to give 

5 (I?," - T:) 

3 3  T - Te 

- 4 
Tav - 

C 

Similar algebraic expressions cannot be obtained for a slab or  a sphere because of 
the beta functions. However, the argument x in equations (37) and (40) can be written as 

Jump Boundary Condition Equations 

An equation very s nilar to equation (22) for temperature distribution can be c,tained 
from the differential equations presented by Deissler in reference 12 
illustrated here for a slab geometry, and then the equations for a cylinder and a sphere 
are written without derivation. 

the emissive power of the edge gas and an adjacent wall as 

The procedure is 
* 

For a slab of radiating gray gas, Deissler's equation (17) gives the difference between 

2 a e  

2k2 aZ2 

g 1 1  1 e - % =(;-;)qe - -  - g, e (44) 
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For the case considered here,  there is no wall, so eb = 0 and 1 / ~  = 1. Therefore, 

The second derivative of emissive power is obtained from 

as 

2 4 az 

Substituting this expression into equation (45) and using, qe = Qze give 

where T is 2kze. 
The two equa- 

tions a re  similar in form, but the equation based on the jump boundary condition (eq. (46)) 
gives a constant 3/2, where the equation of this report (eq. (19)) gives 1. These two 
equations are compared, and the significance of the different value of the constant dis- 
cussed is in RESULTS AND DISCUSSION. For an opaque gas (T -c m), both equations give 
the correct diffusion limit: 

This expression can be compared with equation (19) of this report. 

I 

F 
4 qe 
e 2  

UT = -  

A similar development for a sphere and for a cylinder, using jump boundary condi- 
tions, leads to the following general relation: 

(47) 
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TABLE I. - CONSTANTS FOR EQUATIONS 

(191, (221, AND (47) 

Geometry 

Sphere 

Cylinder 

Slab 

condition 

_I 

This 

Constant, a 

3 3 

2 2.25 

1 1. 5 

-. 

where a = 1.5,  2.25, or 3 for a slab, cylinder, or sphere (see table I). 

Numerical Solution of Transport Equation 

The object of this numerical analysis was to obtain "exact" answers that could be 
used to check the accuracy of the simple, approximate equations presented in this report. 
It is assumed that only one coordinate is necessary to describe the system. It is further 
assumed that the heat flux is known and is symmetric about the center. The analysis 
considers a gas with constant absorption, and in local thermodynamic equilibrium. 

tion (52) of reference 11 into equation (7) of reference 11 and converting the integral to 
spherical geometry. If the distance between the source of radiation and a field point is 
called R = Rf - Rs, and 
the field point is given by 

The heat flux equation can be derived from reference 11 (ch. 1) by substituting equa- 

+ + +  
is a unit vector in the direction of heat flow X, the heat €lux at 

c 

f 

The following nondimensional variables can be defined: 

18 
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T = kX 

where x is the independent variable. 
The normalized heat flux can then be written as 

where s refers  to surfaces of constant temperature and the subscripts 
to field and source points €or the radiation, respectively. 

f and s refer 

The equation for the heat flux is thus an integral equation of the first kind, with the 
kernel equal to 

This kernel is a very sharply peaked, discontinuous function when the optical thickness 
is large, which causes numerical difficulties when the equation is solved. In fact, it 
generally prevents obtaining results for opacities greater than about 10 or  20 

culties. Firs t ,  the nondimensional source strength was expanded in a Taylor ser ies  about 
the field point 

The following numerical solution developed herein eliminated many of these diffi- 

5, = 5f + ( T s  - 7f)q + ES,f 

Then, the following definitions were made 
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The heat flux is then given by the following equation: 

% = tff0,f + qfl,f + E S , f f S , f  d% 
-'e 

An iterative solution to this equation can be found if E and the edge boundary con- 
s 7 f  

dition are those calculated on the previous iteration. Then, this equation becomes a 
first-order differential equation. Therefore, an integrating factor can be used to obtain 
the solution for the next iteration. If the following definitions are made, 

% - f %,ffs , f  d7s 
-7, 

pf = h d r  

the solution is 

t f  = e-pf (i. + LTf geP d$ 

where 

5, = teePe - lTe geP d7 

The first iteration is obtained from the diffusion approximation with jump boundary con- 
ditions. Convergence was assumed when the relative change in ( from one iteration to 
the next was less than 0.0001. This numerical solution was programmed and used to 
obtain "exact" answers. The algebraic equations were compared to these exact answers. 

20 
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RESULTS AND DISCUSSION 

The major result of this study is equation (22), which has been derived in the analysis. 
In this section, the equation is used to display some characteristics of radiating gases. 
In the first subsection, some general features a re  presented. Then, the results of this 
study are compared with previously published information. Next, equation (22) is used to  

3 calculate center, edge, and average gas temperatures for opacities from to 10 fo r  
slab, cylindrical, and spherical geometries. All these results are for a constant absorp- 
tion coefficient. Lastly, a temperature distribution throughout a gas is calculated fo r  a 
situation where the absorption coefficient varies with temperature and where the heat 
sources a re  not radially uniform. This calculation is presented to illustrate how this 
kind of relatively complicated problem can be handled. 

General Characterist ics 

Some of the results are presented in te rms  of a brightness temperature Tb. This is 
the temperature of a blackbody (emissivity of 1) that is radiating the same heat flux as is 
leaving the gas under consideration. Thus, Tb is defined by the equation 

4 
b qe = UT 

Figure 3 affords a convenient way to  relate absolute temperatures to actual heat fluxes. 
Since all the equations can be presented in te rms  of T/Tb, the use of this parameter is a 
convenient way to present curves that apply for  any heat flux 9,. 

Figure 4 depicts some typical temperature distributions of a radiating gas calculated 
with equation (8). 
0.01 (transparent), 1, 100, and 1000 (opaque). These curves are independent of the 
absolute, or dimensional, values of the heat flux, the gas  dimeter, and the absorption 
coefficient. Except for a region near the edge of an opaque gas, the gas temperatures a r e  
all higher than the brightness temperature. Also, the gas radiates most "efficiently" at 
some intermediate opacity. 
to the brightness temperature. These results are for a sphere, but they are also typical 
of cylinders and slabs. 

The radial temperature distribution is shown for optical diameters of 

Efficient radiation means that the gas temperature is close 
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Comparison With Other Results 

The first comparison is made by examining the behavior of equation (22) in the two 
limiting cases of a transparent gas and an opaque gas. Consider a gas volume that is 
vanishingly small, so that its optical dimension kD goes to zero. If the gas is in thermo- 
dynamic equilibrium and has a refractive index of 1, the rate at which energy radiates 
from this volume is related to its temperature T by g 

4 
g 

Q = &UT 

This assumes that the spectral energy distribution is given by the usual Planck function 
which when integrated over all wavelengths gives oT 

For 
steady-state, this is also the volumetric heat source strength since the energy lost by 
radiation must be balanced by an equal energy gain. 
region is related to the volumetric sources by the geometry, as follows: 

4 
g' 

Equation (52) gives the volumetric radiation from a gas  at temperature T 
g ' 

The heat flux leaving a gaseous 
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9, = - 
6 

Sphere : 

For a transparent gas  (where the optical dimension is much less than l), equation (52) 
gives the value of Q. Equations (52) and (53) give 

Slab: 

Sphere: qe = J 
These are "transparent gas" equations that relate the gas temperature to the radi- 

ated heat flux for small T. Equation (22) gives these same equations for the limiting 
case where T - 0. Therefore, equation (22) should give correct results for optically 
thin gases. 

For  the limiting case of an opaque gas, analysis (ref. 10) of radiation from stars 
has shown that the photosphere (or 7redge") temperature is given by 

4 1 4  
b 2 e T = - T  

Equation (22) produces this same result when T -+ 03 and x = 1 (the edge). Reference 10 
also gives the exact answer as 

T 4 6 4  = - T  
b e 4  

The star temperature distribution from the edge inward is given by reference 10 as 

2 
(55) 

24 



where T* is the depth into the star from the edge given in t e rms  of photon mean f ree  
paths. Equation (22) gives this same form as T - 03, since T* = 1/2(1 - Ts) and 

-2 (1 - x ) = 2(1  - 3 for  
Chandrasekhar (ref. 11) also presents a solution for  temperatures near the edge of 

a star. It is obtained using his method of "successive approximations. " The fourth 
approximation gives answers that are virtually exact. Figure 5 shows a comparison of 
temperatures obtained from equation (53), from Chandrasekhar (ref. ll), and from the 
computer solution for a sphere of optical diameter 80. 
ness temperature of 10 000 K. The agreement is quite good. The general conclusion 
is that equation (22) is exact in the limit of a transparent gas, and sufficiently correct 
for an opaque gas for all practical purposes. 

near 1. 

The case chosen is for a bright- 

Chandrasekhar (ref. 11) 
---- Numerical solut ion fo r  kD = 80 

sphere (eq. (51)) 
This  report (eq. (22)) 

J 
0 1 2 3 4 

Optical depth in to  gas, Tt 

Figure 5. - Gas temperatures near  edge for brightness 
temperature of 10 000 K. 

Figure 6 shows a comparison of temperature distributions obtained with equation (22), 
with the jump boundary conditions of reference 12, and with the computer solution of the 
transport equation (eq. (51)). The comparison is for  a slab geometry, and for a bright- 
ness temperature of 10 000 K. Both the jump boundary approximation and equation (22) 
are in close agreement with the numerical (exact) solution for optical thicknesses of 
80 and 2. 
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*O 

Figure 6. -Temperature distr ibut ion in slab for br ightness 
temperature of 10 000 K. 

For the optically thin case, equation (22) gives more accurate answers than are pro- 
vided by jump boundary conditions. For a slab geometry, jump boundary conditions lead 
to e r ro r s  of about 11 percent in temperature o r  about 50 percent in heat flux. For a 
cylinder, the corresponding numbers are 3 and 12 percent. 
conditions give correct results. 

For optically thick gases, equation (22) and jump boundary conditions give the same 
results. In the limiting case of T + 0 0 ~  both methods overestimate edge temperature 
(for a given heat flux) by 3 percent or underestimate heat flux (for a given edge temper- 
ature) by 12 percent. 

The idea of a gas edge emissivity is introduced at this point because it permits a 
convenient display and comparison of gaseous radiation characteristics over the entire 
range of opacities. This emissivity is based on the edge temperature. A blackbody at 
T, would radiate 

For a sphere, jump boundary 

The actual heat flux radiated from the gas q will be different in most cases, and is 
given by 
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Figure 7. -Comparison of gas edge emissivity of slab, cylinder, and sphere based on edge temperature. 
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This equation defines the gas edge emissivity. It is the ratio of radiated heat f lux  to the 
, heat flux a blackbody at Te would radiate. 

Gas edge emissivity is shown in figure 7 for a slab, cylinder, and sphere, respec- 
tively. The curves labeled "this report" were calculated using equation (22); the constant 
a had the appropriate numerical value of 1, 2, or 3 as indicated in table I. The curves 
labeled "Deisslertl, were calculated using the constants 1. 5, 2 . 2 5 ,  or 3 (table I) that 
were obtained from jump boundary conditions. The curves labeled llexactll were obtained 
from the computer program described in the section ANALYSIS. 

no particular significance to these limits, except that they include all important trends. 
Below an opacity of loq2, all of the curves continue to decrease without bound with a 

3 constant slope of 1. Above an opacity of 10 , all emissivities are essentially constant. 
The approximate equations give edge emissivities that approach the diffusion limit of 2.  
The computer solution appears to be approaching some higher value, in all probability the 
 exact^^ value of 4/fi, or 2 . 3 1 .  

Figures 7(a) to (c) show that equation (22) gives somewhat better results than jump 
boundary conditions for opacities less than 1. Above T = 1, both methods are quite good. 
For a sphere, both approximations are good for  all opacities. The jump boundary 
approach is least applicable (at T < 1) for a slab geometry. The reason for this geometry 
effect on the accuracy of jump boundary conditions is not apparent. 

equation (22). It is interesting to note that the constant a in equation (22) is the value of 

Gas emissivities are shown for an optical dimension T from to lo3. There is 

Figure 8 summarizes the edge emissivity of a radiating gas, as calculated from 

.2- 

I I 1 1 1 1 1 1 1  

103 
Optical thickness, T =  kD for  sphere and cylinder, T = kL for  slab 

Figure 8. - Gas edge emissivity, based on edge temperature T,, f rom equation (22). 
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7 that gives an emissivity of 1. That means that a is the value of T for which the edge 
temperature is equal to the brightness temperature. 

Calculat ion of Gas Temperatures 

Figure 8 relates the radiated heat flux to the edge temperature. Equation (22) also 
yields internal gas  temperatures. Figure 9 displays edge, average, and center temper - 
atures as a function of optical dimension T and geometry. The temperatures are nor- 
malized to the brightness temperature so that the curves apply for any heat flux. 

average temperatures are high for  both transparent and opaque gases. Center and aver- 
age temperatures have a minimum value that is within 10 percent of the brightness tem- 
perature. This minimum occurs at an optical dimension between 2 and 4. The edge 
temperature is high for a transparent gas, and decreases to an asymptotic value of 
84 percent of the brightness temperature for T greater than 10. For  T l e s s  than 1, 
the gas is at one constant temperature from edge to center. 

The curves show the same general trends for all three geometries. Center and 

Variable Absorption Coefficient and Nonuni form Heat Source Dis t r ibut ion 

This section illustrates how to calculate temperatures in a radiating gas when the 
absorption coefficient varies with temperature and the heat sources a re  distributed non- 
uniformly in the gas. Equation (30) w a s  derived for constant heat sources, but with an 
absorption coefficient given by 

k = cTn 

An illustrative case is considered here where the heat source strength also varies 
throughout the gas.  

is to estimate the temperature distribution in the gas. This problem is of current interest 
because induction heating is being used to study radiant-heat -transfer problems that would 
exist in a gaseous-uranium-fueled nuclear rocket engine (refs. 15 and 16). 

ations of the absorption coefficient and the heat sources. Reference 17 has  calculated 
uranium absorption coefficient as a function of temperature at 100 atmospheres. The 
case to be calculated here  is at 1 atmosphere. The cross  sections calculated at 100 at- 
mospheres a re  assumed to hold at 1 atmosphere. Although this is not wholly true, it 

The case to be considered is that of an induction-heated uranium gas. The problem 

It is first necessary to determine the mathematical relations that describe the var i -  
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Figure 10. - Uran ium absorption coeffi- 
cient. Pressure, 1 atmosphere. 

should be adequate for the purpose of this calculation. 
values at 100 atmospheres (ref. 17) by 100 is shown in figure 10 as a solid curve. 

w a s  approximated by the dashed line shown in figure 10. 

The curve obtained by dividing the 

Since a logarithimic straight line is more mathematically convenient, the true curve 
The equation of this line is 

where the absorption coefficient k is in inverse centimeters and T is in K. 

can be expressed in the form of a "decay factor": 
For  an induction-heated plasma, the spatial variation of the volumetric heating rate 

where Q(R) and Qe a re  the local heating rates at any radius R and at the edge radius 
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Re, respectively; y is the distance radially inward from the edge; and 6 is a skin depth 
(ref. 18). In order to obtain the skin depth, it is necessary to estimate the electrical 
resistivity. Following the method of reference 19 and using an electron density of 

17 2 . 1 7 ~ 1 0  per cubic centimeter yields the resistivity as 1 4 ~ 1 0 - ~  ohm-meter. 
This finally results in a heat source distribution given by 

-- Q - el.7(E-1) 

Qe 
and shown in figure 11. The dashed curve shows the parabolic approximation to this 
curve that was used in the example calculation because of mathematical convenience. 
The equation used is Q/Qe = c1 + c2g2 where c1 = 0.18 and c2 = 0.82. 

I 
1.0 

I 
.a 

'! 
0 .2 . 4  .6  

Radial position, I RIR, 

Figure 11. -Variable heat source distribution used in 
sample problem. 

Carrying out the integration of this parabolic variation of Q for a cj'linder, the 
temperature distribution is given by 
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The term (cl + c2/2) in this equation is (Qav/Qe). I€ the heat source distribution is con- 
stant, then c2 is zero and c is 1, and this equation reduces to equation (30), which 

'n was for the case where k = cT . For  a constant absorption coefficient, n = 0, and the 
equation further reduces to equation (22). 

use. For the uranium plasma example, w e  choose a power of 500 kilowatts per centimeter 
of length, and a cylindrical plasma with a diameter and length of 1 centimeter. 
gives a heat flux of 159 kilowatts per square centimeter, which corresponds to  a bright- 
ness temperature of 12 900 K. 

The foregoing equation may appear to be rather cumbersome, but it is quite easy to 

This 

The edge temperature must be obtained first. The edge temperature is given by 

1 -1 3) 2 

i/ 4 

There is an iteration required because re is a function of Te, since for this case 

12 -3  = 2kRe = 24x10 ReTe 'e 

But the iteration quickly converges, with a good f i rs t  guess at the edge temperature being 
the brightness temperature. The final answer for Te is 

Te = 12 200 K 

re = 6 . 6  

The other values required a re  

c1 = 0.18 

c2 = 0.82 

n = - 3  

Tb = 12 900 K 

These values result in the following equation for the temperature distribution in the 
uranium plasma: 
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-- - [O. 61 + 0. 52(1 - E2) + 0.6(1 - R4,3 
12 900 

For the simple case of constant absorption coefficient (T = 5. 5 is an average value for 
this case) and uniform heat generation, equation (22) gives 

,1/4 
___- - [O. 682 + 1. 03(1 - E”,] 
12 900 

These two equations were used to  obtain the temperature profiles shown in figure 12. 
is apparent that, for  the example case chosen, the combined effects of variable absorption 
coefficient and nonuniform heat generation do influence the temperature profile. The 
main point here  is not the precise numbers obtained, but simply that a fairly complicated 
situation can be handled numerically. 
incorporate : 

It 

The conditions were deliberately chosen to 

(1) Temperature -dependent absorption coefficient 
(2) Nonuniform heat generation 
(3) Intermediate optical dimension 
Two restrictions remain. One is that the gas is gray. The other restriction is that 

diffusion approximation is applicable. For  constant absorption coefficient and heat source 
distribution, the diffusion results are in good agreement with exact answers. This has 
not been shown for the case of variable absorption coefficient and heat source distribution. 
The mathematics have been carried out, but this does not assure  correct answers. 
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Obviously, there may be combinations of a temperature-dependent absorption coefficient 
and nonuniform heat sources that cannot be handled by the diffusion approximation. To 
establish the validity of the variable absorption coefficient and heat source equations is 
a difficult problem that remains to be solved. 

SUMMARY OF RESULTS 

An analysis of radiant heat transfer from gray gases was carried out to obtain a 
simple, algebraic equation for  the temperature distribution throughout the gas, from the 
edge to the center. 
This heat is radiated to the surrounding environment, which is assumed not to radiate 
back. 
slabs were considered. 

the absorption coefficient and the major dimension; that is, T is given by kL for a slab 
of thickness L or by kD for a sphere o r  a cylinder of diameter D. Another generalizing 
parameter turned out to be a brightness radiating temperature Tb. This is the tempera- 
ture of a blackbody (emissivity of 1) that would radiate the same heat flux as the gas. 

For a constant absorption coefficient and uniformly distributed heat sources, the 
following results were obtained: 

1. The edge temperature Te is determined by the heat flux being radiated, the 
optical dimension 7, and the geometrical shape of the gas volume. 

The heat energy is generated by sources distributed within the gas. 

The analysis was for one-dimensional geometries; spheres, cylinders and 

Results a r e  presented in te rms  of an optical dimension T, which is the product of 

It is given by 

The constant a is 1, 2, o r  3 for a slab, cylinder, or  sphere, respectively. 
2.  The temperature distribution throughout the gas is given by 

where a is the same as in the edge temperature equation, and X is the dimensionless 
distance from the center of the gas to the edge. 

3.  These equations go to the proper asymptotic limits for a transparent gas and an 
opaque gas. At intermediate opacities (7 of 0. 1 to lo), these equations give temperatures 
that are less than 3 percent different f rom answers obtained with a numerical solution of 
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the exact transport equation. Therefore, the equations are good approximations over the 
entire range of opacities. 

absorption coefficient that is a function of temperature. 
an absorption coefficient given by k = cTn, the temperature profile is 

The method of this report can also be numerically extended to the case of an 
For  a flat plate geometry and 

T 

Tb =F (1 - 
. .  . ;’$ 

4 -n 

where Z is the dimensionless distance from the midplane to an edge surface. 
optical thickness of the slab T~ is based on the edge temperature. The edge temper- 
ature, and T ~ ,  a r e  dependent only on the heat flux: 

The 

It is also possible to carry out the mathematics necessary to include the effect of a 
nonuniform distribution of heat sources. This is illustrated by deriving an equation for 
the temperature distribution in an induction-heated uranium plasma. In this situation, 
the absorption coefficient is a function of temperature, and the heat sources a re  a func- 
tion of radial position in a cylindrical geometry. 
coefficient and heat sources were not compared with exact solutions, 

The results for variable absorption 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 11, 1969, 
122-28-02-33-22. 
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